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Abstract

I study a model of multilateral bargaining in which multiple proposers simultaneously
make offers on several pies. I identify a novel source of inefficient delay unique to
multilateral bargaining – free-riding among proposers combined with the variability
of proposal power. I establish that there exist stationary equilibria with delay and
characterize the equilibrium agreement sets. In the worst equilibrium agents agree if
and only if the proposal power is sufficiently concentrated. I compare the efficiency
consequences of different voting rules, showing that voting rules requiring approval by
greater majorities lead to more delay in the worst equilibrium.

1 Introduction

Writing legislative proposals is oftentimes a collective endeavor. When several agents

possess the means and the expertise, as well as the desire to develop certain parts of

a draft legislative bill or a resolution, the outcome is legislative proposals sponsored by

multiple representatives. Indeed, the incidence of co-sponsored draft bills is high in legislative

bargaining and bargaining in international organizations (Fowler 2006, Baller 2017: 475).1

Likewise, bargaining within the governing coalition in parliamentary democracies requires

∗I am grateful to my advisor, Wolfgang Pesendorfer, for his support in developing this project. I would
like to thank Faruk Gul and Germán Gieczewski for insightful conversations. For helpful comments I would
also like to thank Gleason Judd, Andrew Mack and seminar audiences at Harvard, Princeton, Stanford,
Vanderbilt and the University of Southern California.
†Svetlana Kosterina is assistant professor in the Economics Department at the University of Pittsburgh;

email: svk14@pitt.edu
1To illustrate, almost half of the bills introduced in the US Congress in 1973-2004 were cosponsored

(Fowler 2006). Similarly, 38 percent of the bills introduced in the Chamber of Deputies in Argentina in
1983-2002 (Aleman et al. 2009: 98-99), and most bills introduced in the Chilean Chamber of Deputies in
1990-2002 (Crisp, Kanthak, and Leijonhufvud 2004: 710) were cosponsored.
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reaching agreement on policies developed by multiple ministers who make proposals on the

different portfolios that they control.

The budget approval process in the US Congress is a particularly persuasive example of

bargaining with collective proposal control. There, the twelve Appropriations Subcommittees

write the appropriation bills, so multiple agents have proposal power over different issues

at the same time. The appropriation bills are then packaged together into one omnibus

spending bill and voted on as a package.

The aim of the present paper is to explore the consequences of collective proposal

control for the dynamics of the bargaining process. I start by introducing a model of

multilateral bargaining with collective proposal control. A surplus is to be divided among

the agents. The surplus consists of several parts, which I refer to as issues, or pies. In each

period, proposers are selected randomly. An agent can be a proposer on a subset of the pies.

Each proposer makes offers on the subset of the pies that she controls, and all agents accept

or reject the offers on the table. Acceptance of at least q agents is needed for agreement.

My main finding is that the model admits stationary equilibria that are inefficient

because they feature a delay in agreement. My other major results include a characterization

of the worst equilibrium,2 a comparison of the efficiency properties of different voting rules

and a characterization of the set of all equilibrium agreement sets.

The main reason for the delay is free-riding among proposers: each proposer would

like the other proposers to share surplus with the non-proposers to secure their support.

Delay occurs because, given the conjecture that the other proposers are offering zero to all

other agents under a particular realization of the proposal power, the equilibrium value can

be large enough that a proposer is unwilling to make the offers leading to agreement all by

herself. Thus the reason for the delay is twofold: it is the free-riding problem facilitated by

the simultaneity of the proposals and the variability of the proposal power over time that

enable the proposers to forego agreement today in hopes of reaching a better deal tomorrow.

Importantly, a one-period version of the model I consider does not admit inefficient equilibria

– the prospect of controlling more pies in the future is crucial for generating the inefficient

delay.

My main contribution is identifying a new source of inefficiency specific to multilateral

bargaining – free-riding among agents who have proposal power over certain issues. My model

thus explains why reaching agreement is particularly difficult in multilateral, as compared to

bilateral, bargaining. Because in a bilateral setting my model yields immediate agreement

in the unique equilibrium, the reasons for delay isolated by my model are unique to the

multilateral setting. This is in contrast to most of the existing models producing delay in

2The worst (symmetric) equilibrium is the equilibrium that yields the lowest payoffs to the agents.
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bargaining, which feature delay in both bilateral and multilateral environments. A handful

of papers with delay in multilateral and not bilateral settings obtain delay for very different

reasons. In Ali (2006), for example, the reason for delay is persistent optimism in a game

that is sufficiently long, while in Jehiel and Moldovanu (1995) and Cai (2000), who consider a

seller engaged in a sequence of bilateral negotiations with buyers, the reasons are externalities

and the possibility of partial agreements.

2 Delay: An Example

The first main result of the paper is that in my model there exist parameters such that

there are stationary equilibria with delay. Here I provide a simple example to illustrate the

result.

Suppose that there are three pies to divide, four agents and approval of all four agents

is needed for agreement. With probability 1
2
, one of the players is in charge of all three pies,

and with probability 1
2
, one player controls two pies and one player controls one pie.

Clearly, if the game lasts for only one period, there is a unique equilibrium with

immediate agreement no matter who is in charge of the pies. In this equilibrium, the proposer

on k pies keeps all k pies to herself and gives 0 to the non-proposers.

Next consider a game that lasts for two periods. When there is only one period

remaining, the unique equilibrium is as described above and the expected payoff of an

agent is V = 3
4
. We conjecture an equilibrium in which when there are two periods

remaining agreement occurs if and only if one player is in charge of all three pies. To

support disagreement when two players are proposers, we need that a proposer on two pies

prefers not to make acceptable offers to the non-proposers provided that the other proposer

is making zero offers. The payoff to making acceptable offers is 2 − 2δV , while the payoff

to disagreeing is δV . Thus we require that 2 − 2δV < δV , which is equivalent to δV0 >
2
3
.

Because V = 3
4
, this is δ > 8

9
.

Finally, consider an infinite-horizon game. Note first that there exists an equilibrium

with no delay. In this equilibrium, when there are two proposers, the proposer on two

pies offers 5
6
δV to each non-proposer, while the proposer on one pie offers 1

6
δV to each

non-proposer. This yields payoffs 2 − 25
6
δV and 1 − 21

6
δV to the respective proposers. To

ensure agreement, we need 2 − 25
6
> δV and 1 − 21

6
δV > δV . Both of these conditions

simplify to δV < 3
4
, which is satisfied for all δ since V = 3

4
in the equilibrium with no delay.

We now conjecture an equilibrium in which agreement occurs if and only if one player

is in charge of all three pies. Because agents are symmetric, the probability that one player
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is in charge of all three pies and agent i is a proposer is 1
8
. The value of an agent in this

equilibrium satisfies

V =
1

8
(3− 3δV ) +

(
1− 1

8

)
δV

With probability 1
8
, agent i is a proposer on all 3 pies. Because there is agreement

in this situation and there are three non-proposers, agent i makes offers δV equal to the

discounted equilibrium values to each of the three non-proposers, which yields a payoff of

3− 3δV to agent i. With probability 1− 1
8
, either one agent is in charge of all three pies but

agent i is not the proposer or there are two proposers, in which case there is disagreement.

In either case, agent i receives his discounted equilibrium value δV . Solving for V , we obtain

V = 3
4(2−δ) .

In order to support disagreement when there are two proposers, we need that an agent

who is a proposer on only two pies prefers not to make acceptable offers to the non-proposers

provided that the other proposer is making zero offers. The payoff to making acceptable offers

to the non-proposers is 2− 2δV , while the payoff to disagreeing is δV . Thus we require that

2− 2δV < δV , which is equivalent to δV > 2
3
. Thus an equilibrium with delay exists if the

value in this equilibrium is sufficiently high. Using the formula for V , we can write this as

δ > 16
17

. We see that an equilibrium with delay exists if players are sufficiently patient.

The delay disappears as δ = e−r∆ goes to 1 (here ∆ is the length of the time period

and r is the discount factor). To see why, note that in the equilibrium with delay there is

agreement if and only if one player is in charge of all three pies. Because the probability of

this is 1
2

in each period, for any fixed interval of time, as the length of the period ∆ goes to

0, the probability that one player is in charge of all three pies at some point in this interval

goes to one.

The intuition for the existence of an equilibrium with delay is as follows. Even though

the size of the surplus is constant in every period and it is feasible to offer to each agent

her discounted value in order to induce the agent to agree, because the proposal power is

dispersed, cooperation among proposers is needed to make the agreement happen. If, for

instance, a proposer conjectures that the other proposer is offering to the non-proposers half

of the discounted value, then the proposer strictly prefers to also offer to the non-proposers

half of the discounted value. If, on the other hand, a proposer conjectures that the other

proposer is making zero offers, then in order to induce agreement the proposer would need

to offer the whole discounted value to the non-proposers. Because the proposer controls

only half of the available pies, the amount left to the proposer after making the acceptable

offer to the non-proposers may be sufficiently small to make the proposer unwilling to make

the offer. The proposer finds the burden of making the acceptable offer too heavy if the
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discounted value that she needs to offer is large enough, which explains why we needed that

the equilibrium value be sufficiently large for the equilibrium with delay to exist.

3 Model

3.1 Description of the Model

There are n agents and m issues, which I also refer to as pies. Each issue generates

one unit of surplus, so that m is the total surplus at stake in the bargaining game. We have

n > m, so that the number of agents exceeds the number of pies.

Let us number the pies from 1 to m. A proposer recognition process is an element of

∆ ({1, . . . , n}m), where a realized vector specifies the identity of the proposer on each pie.

The recognition process is iid over periods. I make a symmetry assumption that consists of

two parts. First, for each vector of proposer identities ψ ∈ {1, . . . , n}m, every permutation

of ψ has the same probability. Thus, for example, if there are two pies, then proposer

identities {1, 2} have the same probability as {2, 1}. Second, for all j, j′ ∈ {1, . . . , n}, if ψ,

ψ′ ∈ {1, . . . , n}m are such that ψi 6= j′ for any i, ψ′i = ψi for all i such that ψi 6= j and

ψ′i = j′ for all i such that ψi = j, then ψ and ψ′ have the same probability. For example,

proposer identities {1, 2} have the same probability as {1, 3}.

Before proceeding further, we find it useful to define a multiset. A multiset is a 2-tuple

(A, z) where A is a set and z : A→ N is a function giving the number of occurrences of the

element k in the multiset as the number z(k).3 To ease notation, we will write a multiset

by listing all its elements. A proposing partition is a multiset Q such that for all k ∈ Q we

have k ∈ {1, . . . ,m} and
∑

k∈Q k = m.

To understand the definition of a proposing partition, consider an example. Suppose

that there are two pies and three agents. Then the set of all proposing partitions is

{{2}, {1, 1}}. If the proposing partition is {2}, then there is exactly one agent who is a

proposer on both pies, and the two other agents are non-proposers. If the proposing partition

is {1, 1}, then there is an agent who is a proposer on exactly one pie, there is another agent

who is a proposer on the other pie, and there is one agent who is a non-proposer. Observe that

a proposing partition tells us whether one agent controls both pies or each pie is controlled

by a different agent but it does not tell us the identities of the proposers.

Due to our symmetry assumption, we can describe the recognition process by the

3That is, a multiset is an unordered collection of objects where every element occurs a finite number of
times, while a set is an unordered collection of distinct objects. For instance, {1, 1} is a multiset but not a
set.
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proposing partitions and their associated probability mass functions. In every period,

proposing partitions are chosen according to a distribution on the space of all possible

proposing partitions with a probability mass function f . The symmetry assumption implies

that, given any realized proposing partition Q, for every number of pies k ∈ Q and for every

pair of agents i, i′, the probability that agent i is a proposer on k pies under Q is equal to

the probability that agent i′ is a proposer on k pies under Q. I let Q = supp f denote the

set of proposing partitions that have a strictly positive probability under f .

I now describe the players’ actions. Letting ∆k =
{

(x1, . . . , xn) ∈ Rn : xi ∈
[0, k] for all i ∈ {1, . . . , n} and

∑n
i=1 xi = k

}
, a proposer on k pies chooses an offer x ∈ ∆k.

The interpretation is that the proposer offers to give the amount xi of her pies to each agent i.

Given the offers of all proposers, each player i chooses ri ∈ [0, 1], with the interpretation that

agent i accepts all offers with probability ri and rejects all offers with probability 1−ri. Note

that I find it convenient to allow all agents, including the proposers, a choice of accepting or

rejecting the offers.

The timing is as follows. First each proposer simultaneously makes proposals to all

other agents on the pies that she controls. Then all agents accept or reject all the proposals.

If q ≤ n agents agree to the proposals, then the game ends and the agents receive their

payoffs. In the event that the offers are accepted, the proposers get to keep the amount of

the pies they control that they have not offered to anyone. If fewer than q agents agree, then

no agreement is reached (on any pies) and in the next period proposers are chosen randomly

again. I assume that q > m, that is, the number of agents whose support is needed for an

agreement exceeds the number of pies.4 The agents have a common discount factor δ ∈ (0, 1).

An outcome in period t is {νt, X t, Rt}: a proposer allocation function νt(i) :

{1, . . . , n} → {0, 1, . . . ,m} such that {νt(i) > 0 : i ∈ {1, . . . , n}} = Qt (where Qt is the

realized proposing partition in period t)5 indicating how many pies each agent i was a

proposer on, a collection of offers of the proposers X t ∈ ×i∈{1,...,n}:νt(i)>0∆νt(i) and a collection

of the votes of each agent to accept or reject Rt ∈ {0, 1}n. A T -period history then is

hT = {νt, X t, Rt}t≤T .

Let H t denote the space of all t-period histories, and let V denote the space of proposer

allocation functions. Given νt ∈ V , a strategy at the proposal stage in period t for agent i

who is a proposer on k pies is χ̃i,k,ν(h
t−1) : H t−1 → ∆k. A strategy at the response stage in

4A sufficient condition for this assumption to be satisfied is that n > 2m and q > n
2 , that is, it is sufficient

that the number of agents is sufficiently large relative to the number of pies and the voting rule requires the
support of at least a simple majority of the voters.

5There is a slight abuse of notation here because {νt(i) > 0 : i ∈ {1, . . . , n}} is an ordered set, while
Qt is an unordered set. What we mean is that there is a way of ordering Qt such that it is equal to
{νt(i) > 0 : i ∈ {1, . . . , n}}.
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period t for agent i is r̃i,ν(h
t−1, X t) : H t−1 ××i∈{1,...,n}:νt(i)>0∆νt(i) → [0, 1].

I assume that the proposers have access to a public randomization device. The role of

the public randomization device is to ensure that a (symmetric) pure strategy equilibrium

exists when the voting rule is not unanimity. In this setting, the proposers have to coordinate

on the identities of the members of the minimal non-proposing winning coalition, and a public

randomization device aids the coordination.

3.2 Equilibrium Definition

I focus on pure strategy symmetric subgame perfect equilibria that are stationary (i.e.

the offers depend only on the proposing partition Q in the current period and the acceptance

decisions depend only on the current offers and the current Q).

If, given Q, there are fewer than q proposers, a minimal non-proposing winning coalition

is a subset of the non-proposers such that the number of the proposers plus the number of

the members of this subset is q. If there are at least q proposers, a minimal non-proposing

winning coalition is an empty set. I let MQ denote the set of all minimal non-proposing

winning coalitions given Q.

Our equilibrium concept requires that a proposer makes the same offer to all other

proposers, and makes the same offer to all non-proposers in a minimal non-proposing winning

coalition selected by the public randomization device. Thus, letting ∆Q
k = {(y, y′) : y, y′ ∈

[0, k], (|Q| − 1)y + (q − |Q|)y′ ≤ k}, a proposer on k pies chooses an offer in ∆Q
k when the

proposing partition is Q.

We restrict our attention to strategies of the following form. Given Q ∈ Q, a strategy

at the proposal stage for a proposer on k pies is a mapping χk,Q(M) :MQ → ∆Q
k from the

space of minimal non-proposing winning coalitions to the space of feasible offers ∆Q
k . Given

Q ∈ Q, a strategy for an agent at the response stage is a mapping rQ(x) : ×k∈Q∆Q
k → [0, 1]

from the space of feasible offer profiles to [0, 1].

An equilibrium is then a collection indexed by Q ∈ Q consisting of a public

randomization device that generates a uniform distribution over MQ, a collection of

mappings χk,Q(M) :MQ → ∆Q
k for each proposer on k pies for each k ∈ Q, and a collection

of mappings rQ(x) : ×k∈Q∆Q
k → [0, 1] for each agent.

For convenience, I impose an innocuous genericity assumption: whenever a proposer

weakly prefers to make strictly positive offers rather than zero offers, the proposer strictly
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prefers to make these offers.6 7

I focus on the equilibria in which only non-proposers receive strictly positive offers.

Lemma 1 in the Appendix shows that it is without loss of generality: for any equilibrium

in which some proposers receive strictly positive offers there exists an equilibrium in which

only non-proposers receive strictly positive offers and the agreement set is the same.

I require that agents use stage-undominated voting strategies (Baron and Kalai 1993).8

It can be shown that this implies that the equilibria that I construct are stage undominated.

I also require that proposers do not make (net) offers that leave them strictly less than their

discounted equilibrium continuation values.9

An agreement set for the equilibrium σ is a set of proposing partitionsQ(σ) that lead to

agreement. I focus on the equilibria in which proposers make zero offers under the proposing

partitions Q 6∈ Q(σ). Lemma 2 in the Appendix shows that this is, in a sense, without loss

of generality: for any equilibrium in which some proposer makes strictly positive offers under

a proposing partition Q 6∈ Q(σ) there exists an equilibrium σ′ with the same agreement set

in which all proposers make zero offers under the proposing partitions Q 6∈ Q(σ′).

4 Delay and Immediate Agreement

4.1 Measure of Resources for Overcoming Gridlock

In order to achieve agreement, proposers have to share some of the surplus with

non-proposers. This leads to a free-riding problem among proposers: each would like the

other proposers to share surplus with the supporters while keeping her own surplus. The

proposing partitions Q differ in the extent to which they lead to free-riding problems.

I let sQ = q − |Q| denote the number of non-proposers whose support is needed for

agreement under Q provided that all proposers support the agreement. I refer to sQ as the

size of the minimal non-proposing winning coalition, or supporters.10

6A proposer making zero offers means that a proposer is offering to give zero to all other agents and is
keeping all the pies that she controls for herself.

7I state the assumption informally for the ease of exposition. The assumption can be stated formally as
requiring that certain inequalities hold strictly. The assumption is satisfied for generic values of δ.

8See section A.1 in the Appendix for more details.
9Given that agents use stage-undominated voting strategies, such offers must be rejected at the voting

stage. The requirement rules out unreasonable equilibria in which proposers vote against their own offers.
10Observe that our assumption that q > m implies that q > |Q| for all Q. If instead we had q < |Q|, that

is, if the number of agents whose support was needed for an agreement was smaller than the number of the
proposers, then sQ = 0. It can be shown that in this case in any equilibrium there must be agreement under
such a proposing partition and that all the proposers must vote in favor of it, implying that agreements
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I define DQ = max{k ∈ Q} as the maximum number of pies an agent is a proposer on

given that the proposing partition is Q. Then RQ denotes the measure of resources available

for overcoming gridlock at Q:

RQ :=
DQ

sQ + 1

We can interpret RQ as concentration of the proposal power.

4.2 The Value Function

I first show that the value of an agent in a symmetric equilibrium can be written

as a function only of the probability of the proposing partitions under which agents agree.

Suppose that in equilibrium there is agreement under partitions P . Then agreement happens

with probability
∑

Q∈P f(Q), and we can compute the value function in this equilibrium as

U(P , f) =
m

n

∑
Q∈P

f(Q) + δ

(
1−

∑
Q∈P

f(Q)

)
U(P , f)

U(P , f) =
m
n

∑
Q∈P f(Q)

1− δ + δ
∑

Q∈P f(Q)

For characterizing the worst equilibrium, cutoff strategies are important. A cutoff

strategy is one where agreement sets have the form

Q(σ) = {Q ∈ Q : RQ ≥ b}

Given the PMF f of the distribution of the proposal power, I define a CDF F with

respect to the order on the space of the proposing partitions induced by RQ
11 as F (Q) =∑

Q′:RQ′≤RQ
f(Q′). Moreover, given Q such that there exists Q′ ∈ Q with RQ′ < RQ, I let

Q− = {Q′ ∈ Q : RQ′ < RQ, RQ′ ≥ RQ′′ ∀ Q′′ ∈ Q : RQ′′ < RQ}

denote the proposing partition that immediately precedes Q according to the order induced

by RQ. If there does not exist Q′ ∈ Q with RQ′ < RQ, I set RQ− = 0.

To compute the value function in a cutoff equilibrium profile, suppose that agreement

would involve non-minimal winning coalitions.
11For simplicity, I assume that the parameters are such that the order on the space of the proposing

partitions induced by RQ is strict.
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occurs under all Q such that RQ ≥ b for some b 6= RQ for any Q ∈ Q.12 Observe that 1−F (b)

is the probability that Nature chooses Q with gridlock resources RQ > b. Agreement thus

occurs with probability 1− F (b). The value function is then given by

V =
m

n
(1− F (b)) + δF (b)V

V (b) =
m
n

(1− F (b))

1− δ(F (b))

Observe that V is a non-increasing step function: the larger the cutoff gridlock resources

RQ, the smaller the agreement set and the probability of agreement, and thus the lower the

payoffs.

4.3 Delay

I start by making an assumption on the parameters that allows for the largest possible

set of pure strategy equilibria to exist.13 First, I assume that there exist Q ∈ Q such that

RQ ≥ δV (RQ). Next, I let

Q∗ = {Q ∈ Q : RQ ≥ δV (RQ), RQ ≤ RQ′ ∀ Q′ ∈ Q : RQ′ ≥ δV (RQ′)}

denote the lowest Q (according to the order induced by RQ) satisfying RQ ≥ δV (RQ).14

Finally, I assume that15

RQ∗−
< δV (RQ∗)

The assumption is satisfied if proposing partitions with high gridlock resources RQ are

sufficiently likely. For example, making the proposing partition {m} sufficiently likely would

ensure that the condition is satisfied. Moreover, higher per-agent surplus m
n

and discount

factor δ make the assumption more likely to hold.

Fixing a distribution of the proposal power, an equilibrium is said to be the worst if

12It is straightforward to extend V to values b such that b = RQ for some Q ∈ Q: set V (RQ) =
m
n (1−F(RQ−))
1−δF(RQ−)

.

13If this assumption is violated, the value function changing discontinuously when a proposing partition
is added to an agreement set may lead to non-existence of some of the pure strategy equilibria described
below. Allowing for mixed strategies would restore equilibrium existence at the cost of making the exposition
more cumbersome. In particular, if mixed strategies are allowed, the statement in Theorem 1 that there
exists an equilibrium with delayed agreement if and only if minQ∈QRQ < δmn is true without any additional
parameter assumptions.

14Note that, because there exist Q ∈ Q such that RQ ≥ δV (RQ), Q∗ is well-defined.
15Note that V is a function that depends on F (RQ∗

−
), m

n and δ and is not an equilibrium object.
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no other equilibrium that exists given this distribution yields strictly lower payoffs to the

agents.16 I now present a result showing when delay occurs and how much delay is possible.

Theorem 1.

1. There always exists an equilibrium with immediate agreement.

2. There exists an equilibrium with delayed agreement if and only if minQ∈QRQ < δm
n

. If

there exists an equilibrium with delay, then the worst equilibrium involves agreement

under proposing partitions Cf that satisfy

Cf = {Q ∈ Q : RQ ≥ δV (RQ)}

The first part of the theorem says that there is always an equilibrium with no delay.

The second part says that there is an equilibrium with delay if and only if a condition on the

primitives is satisfied. The condition holds if the discount factor and the per-agent surplus

are large enough.

The second part of the theorem also says that a collection of proposing partitions is an

agreement set in the worst equilibrium if and only if it is the set of all partitions Q ∈ Q such

that the gridlock resources RQ exceed δV (RQ), the discounted value function in a cutoff

equilibrium profile. That is, the agreement set is a set of the partitions under which the

proposal power is sufficiently concentrated. Henceforth, I use Cf to denote the agreement

set in the worst equilibrium given that the distribution of the proposal power is f .

To understand the result, two observations are important. First, observe that delay

happens in the model because the burden of making acceptable offers is shifted to certain

proposers only. The incentive to not make acceptable offers (which leads to delay) is the

greatest if there is only one individual who is tasked with making all the offers. Therefore,

the worst equilibrium is one in which, whenever equilibrium prescribes disagreement under a

proposing partition, each proposer believes that the other proposers are making zero offers.

Second, observe that, because the amount left to the proposer is increasing in the

number of pies she controls, if the proposer on the maximum number of pies is unwilling to

make acceptable offers, then neither are proposers on a smaller number of pies. Moreover,

because the amount left to the proposer is decreasing in the number of the non-proposers

she has to buy off, if a proposer on a given number of pies is not willing to make acceptable

offers to the non-proposers under some proposing partition, then, keeping the number of pies

a proposer controls fixed, she is not willing to make acceptable offers to a greater number of

16Recall that we focus on symmetric equilibria, which implies that all agents obtain the same payoffs.
The reason agents’ payoffs may differ across equilibria is that the amount of delay in these equilibria may
differ.

11



Figure 1: Worst Equilibrium as An Intersection

RQ
(gridlock

resources)

δV (b)

R{1,1,1,1} R{2,2} R{1,1,2} R{1,3} R{4}

45-degree line

agreement set in the worst equilibrium

non-proposers.

These two observations imply the following. Suppose that in the worst equilibrium

there is disagreement under some proposing partition Q. Then it must be the case that the

proposer on the maximum number of pies prefers to make zero offers under the conjecture

that all other proposers make zero offers. We claim that this implies that there must be

disagreement under all proposing partitions Q′ satisfying RQ′ < RQ. The reason is that,

because gridlock resources are smaller under Q′, the proposer either controls fewer pies or

needs to buy off more non-proposers. Thus if she was unwilling to do so given the worst

conjecture about the behavior of the other proposers under Q, she must be unwilling to do

so given the worst conjecture under Q′.

Figure 1 illustrates the geometric interpretation of the worst equilibrium as an

intersection. The figure depicts the gridlock resources for the proposing partitions {1, 1, 1, 1},
{2, 2}, {1, 1, 2}, {1, 3} and {4} on the x-axis. For this example, I assume that n = 6, δ = 9

10

and the voting rule is unanimity. The discounted value function in a cutoff equilibrium

profile δV is drawn in red, and the 45-degree line is drawn in blue. The figure shows that

Cf , the agreement set in the worst equilibrium, consists of the proposing partitions {2, 2},
{1, 1, 2}, {1, 3} and {4}, which are precisely the partitions with RQ above δV (RQ).

We now characterize all equilibrium agreement sets. Before stating the main result, I

12



define the set G.

Definition 1.

G =
{
Q ∈ Q : RQ ≥ δ

m

n

}
Proposition 1 characterizes the set of all the equilibrium agreement sets.

Proposition 1.

1. (Increasing Mass on Agreement Set) If a collection of proposing partitions is an

agreement set in some equilibrium, then it remains an equilibrium agreement set if

we increase the probability of this collection.

2. (Guaranteed agreement set) In every equilibrium, there is agreement under any Q with

RQ > δm
n

. There is always agreement when one agent is a proposer on all pies.

3. (Worst Agreement Set Expands) Any superset of Cf is an agreement set in some

equilibrium that exists under f .

4. If
∑

Q6∈Cf f(Q) < f(Q′) for all Q′ ∈ Cf \ G, then the set of all equilibrium agreement

sets under f is equal to the set of all supersets of Cf .

The intuition is as follows. It can be shown that agents disagree under a proposing

partition Q if the equilibrium value is sufficiently large relative to the gridlock resources RQ.

The reason is that a larger equilibrium value means that, in order to achieve agreement, a

proposer needs to give more to the non-proposers and that the value the proposer receives

in the event of disagreement is larger. Increasing the probability of the proposing partitions

in the agreement set or adding partitions to the agreement set increases the equilibrium

payoff and thus preserves incentives for disagreement under the partitions where agents are

supposed to disagree.

4.4 Finite Horizon Equilibria

Given a game that lasts for T periods, I let Qt(σ) denote the agreement set in an

equilibrium σ given that t periods have passed. Proposition 2 provides a result relating

equilibria in finite-horizon games to equilibria in the game with infinite horizon.

Proposition 2. If minQ∈QRQ > δm
n

, then in any game (with finite or infinite horizon)

there is immediate agreement. If minQ∈QRQ ≤ δm
n

, then for any equilibrium σ of the

infinite-horizon game there exists an equilibrium σT of a T -period game such that Qt
(
σT
)

=

Q(σ) for all t < T − 1.
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Proposition 2 shows that for any equilibrium in the infinite-horizon game there

exists a sequence of equilibria of finite-horizon games that converges to the infinite-horizon

equilibrium as the game grows long. In fact, a stronger result is true: for any equilibrium

in the infinite-horizon game and any number of periods T there is an equilibrium in the

T -period game that coincides exactly with the equilibrium in the infinite-horizon game in

all periods except possibly in the last period T .

The intuition for the result relies on the fact that agents disagree if the equilibrium value

is large enough. In the last period T of the finite-horizon game, there must be agreement with

probability one, which yields the largest possible continuation value at T − 1. Because this

value is larger than any value in the infinite-horizon equilibrium, at any proposing partition

where we had disagreement in the infinite-horizon game, we can sustain disagreement in the

game with a finite horizon.

5 The Worst Equilibrium

5.1 Simple Equilibrium

An equilibrium σ is said to be simple if whenever Q ∈ Q(σ) a proposer makes a strictly

positive offer under Q if and only if she is a proposer on DQ pies. Thus an equilibrium is

simple if the only agents who make strictly positive offers are the most powerful ones. The

following Proposition shows that there is a simple worst equilibrium.

Proposition 3. There exists a worst equilibrium that is simple. Moreover, if for all proposing

partitions that have a strictly positive probability there is exactly one proposer on the largest

number of pies, then there exists a unique simple equilibrium.

The first part of Proposition 3 asserts that there exists a worst equilibrium that is

simple. To understand why this is the case, let b∗ be the unique b such that δV (b) ≥ b ≥
δV (b′) for b′ ≥ b∗. Observe that b∗ is precisely the point at which a proposer on the maximum

number of pies DQ prefers not to make acceptable offers for all Q with RQ below b∗ under the

conjecture that all other proposers are making zero offers and would make acceptable offers

for all Q with RQ above b∗, also under the conjecture that all other proposers are making

zero offers. In a simple symmetric equilibrium, if there are several agents who are proposers

on DQ pies, then they must all make strictly positive acceptable offers to the non-proposers.

However, if the proposer is willing to make acceptable offers alone, then the proposer is

certainly willing to make acceptable offers when the burden of making the offers is shared.

Therefore, there is a simple worst equilibrium.
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The second part of Proposition 3 says that if there is only one proposer on the maximum

number of pies, then there is a unique simple equilibrium. In a simple equilibrium the

proposer must prefer to make acceptable offers for Q in the agreement set and not to make

acceptable offers for Q in the disagreement set under the conjecture that all other proposers

are making zero offers. As explained above, under this conjecture the proposer on DQ pies

is willing to make acceptable offers if and only if Q is such that RQ ≥ δV (RQ), so the simple

equilibrium is unique and coincides with the worst equilibrium.

5.2 Comparison of Voting Rules

In this section I compare the properties of different voting rules in the worst equilibrium.

Proposition 4. In the worst equilibrium delay is longer and payoff is lower under the voting

rules that require a larger majority.

The reason that smaller majority requirements q generate smaller delay is that, because

under smaller q proposers need fewer supporters to get their proposals passed, they can keep

a greater share of the pies that they control for themselves after making acceptable offers

to the minimal non-proposing winning coalition. This makes it more difficult to sustain

equilibria with delay in which a proposer is unwilling to make acceptable offers because the

amount of pies left to the proposers after making the offers is too small compared to her

discounted value in the future.

Figure 2 provides a geometric intuition for the result. As we increase the majority

requirements, RQ =
DQ
sQ+1

decreases for all Q because more supporters sQ need to be paid.

On the other hand, V (RQ) does not change because the payoff in a symmetric equilibrium

with a given agreement set does not depend on the voting rule. Then the gridlock resources

that make the marginal most powerful proposer indifferent between making acceptable offers

and not go up. Because the agreement set in the worst equilibrium is the set of all partitions

Q with RQ exceeding the gridlock resources that make the proposer indifferent, the agreement

set in the worst equilibrium shrinks, which increases delay and lowers payoffs.

A comparison of the welfare properties of voting rules in my model with the welfare

properties of voting rules in the models of bargaining with stochastic surplus due to Merlo

and Wilson (1995) and Eraslan and Merlo (2002) is of interest. Eraslan and Merlo (2002)

show that in a setting with one proposer and a stochastic surplus the payoffs under unanimity

are higher than the payoffs under non-unanimous agreement rules because agents agree too

soon under non-unanimous voting rules. That is, in their model, delay is efficient, and

non-unanimity rules lead to an inefficiently small amount of delay. In contrast, in my model,

because the size of the surplus is constant, all delay is inefficient, and rules requiring greater
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Figure 2: Comparison of the Voting Rules

RQ
(gridlock

resources)

δV (b)

R{1,1,1,1} R{2,2} R{1,1,2} R{1,3} R{4}

45-degree line

agreement set under q2

agreement set under q1 > q2

majorities are worse because they induce greater delay.

Thus my model yields the conclusions that are the opposite of those reached by Eraslan

and Merlo (2002): while in their model the unanimity rule is better than non-unanimity rules,

in my model non-unanimity rules lead to higher payoffs (in the worst equilibrium) than the

unanimity rule.

6 Related Literature

The paper is related to several strands of literature on bargaining with complete

information. Most notably, it is related to the Baron-Ferejohn model of legislative bargaining

(Baron and Ferejohn 1989) in which one proposer on one pie is randomly selected in every

period. This model has been extended in various directions (Eraslan 2002, Kalandrakis 2015,

Eraslan and Merlo 2017). Unlike the Baron-Ferejohn model, the model in the present paper

allows for multiple pies and multiple proposers who make the offers on the pies they control

simultaneously. Whereas in the Baron-Ferejohn model there must be immediate agreement

in any stationary equilibrium,17 my model admits stationary equilibria with delay.

17Provided that agents use stage-undominated voting strategies (Baron and Kalai 1993).
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The literature on bargaining with complete information has identified several reasons

leading to delay in agreement: the size of the available surplus changing stochastically18

(Merlo and Wilson 1995, Eraslan and Merlo 2002), non-common prior beliefs about

recognition probabilities19 (Yildiz 2003, Ali 2006), non-stationarity of the equilibrium

(Fernandez and Glazer 1991, Haller and Holden 1990), and repetition of a stage game that

has an inefficient Nash equilibrium (Dekel 1990, Chatterjee and Samuelson 1990). None of

these features are present in my model – thus the reason for delay that I identify is novel.

Finally, the literature on multi-issue bargaining (Fershtman 1990, Inderst 2000, In and

Serrano 2004) is related. The papers in this literature find that agreement is reached without

delay in stationary equilibria and that the bargaining agenda can have distributive effects.

18Also related is a model by Cai (2000) in which one proposer engages in a sequence of bilateral
negotiations with responders. If a responder accepts an offer, she receives a cash payment immediately and
leaves the bargaining process. Cai (2000) shows that these endogenous changes in bargaining environment
can produce delay.

19Ortner (2013) combines stochastic surplus with non-common prior beliefs about recognition
probabilities.
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Appendix

A.1 Stage Undominated Equilibria

It is important to point out that the equilibria with delay that I construct do not rely

on the agents using weakly dominated strategies. In order to check whether the equilibria I

characterize are weakly dominated or not, I need to first define the notion of weak dominance

appropriate for my game. A definition of weakly undominated equilibria commonly used in

bargaining games is that of stage undominated equilibria, introduced by Baron and Kalai

(1993). A stage game starts with the proposers being drawn randomly and ends with an

acceptance or a rejection of the offers of the proposers. An equilibrium is said to be stage

undominated if the strategies it induces in every stage game are weakly undominated for any

agent.20 Letting V σ denote the value of an agent in the equilibrium σ, a stage-undominated

voting strategy is a voting strategy such that an agent accepts the offers made to her if and

only if the sum of the offers x satisfies x ≥ δV σ.

It can be shown that, provided that agents use stage-undominated voting strategies,

the equilibria that I construct are both weakly undominated and (generically) stage

undominated. Informally, the reason is that there is no strategy for a proposer that is

optimal no matter what the other agents do: if the other agents accept when the proposer

makes zero offers, then the proposer strictly prefers to make zero offers, while if the other

agents reject when the proposer makes zero offers, then the proposer may strictly prefer to

make strictly positive offers.

B Proofs

Lemma 1 (No Transfers Among Proposers). If there exists an equilibrium in which

under some Q ∈ Q(σ) some proposer receives a strictly positive offer, then there exists an

equilibrium in which no proposer receives strictly positive offers and the set of the proposing

partitions under which there is agreement is the same.

Proof of lemma 1.

Let V denote a value in some equilibrium. We first show that δV < 1. Suppose this

was not the case. Then δnV ≥ n. Because n > m, this implies that nV > δnV > m. But

20Recall that a strategy of an agent is weakly undominanted if there does not exist a strategy that weakly
dominates it, that is, if there does not exist a strategy that yields to the agent a weakly higher payoff no
matter what strategies the other agents use and a strictly higher payoff for some strategy profile of the other
agents.
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then the sum of the agents’ values nV exceeds the value of the available pies m, which is a

contradiction.

Fix an equilibrium and a proposing partition Q such that there is disagreement under

Q in this equilibrium. Consider the strategy profile in which each proposer makes zero offers

to all other agents and keeps all her pies for herself under Q. Then all non-proposers vote

against the proposals, which implies that there is disagreement under Q, as required.

Next, fix a proposing partition Q such that there is agreement under Q in the

equilibrium that we fixed. Let P denote the set of the agents who are proposers under

Q. For each agent i ∈ P , let Xi denote the sum of the offers he makes to the other agents.

For each agent i, let Yi denote the sum of the offers he receives from the other agents.

We will define a new set of offers as follows. Let xij denote the new offer that agent i

makes to agent j. Set xij = 0 for all j ∈ P \ i.

For each i ∈ P , let Zi = Xi − Yi. Zi is the net sum of the offers that proposer i makes

to the other agents. We claim that we must have Zi ≥ 0.

Suppose this was not the case and we had Zi < 0. Fix an agent j such that agent i

receives a strictly positive offer x from agent j (note that the fact that Zi < 0 implies that

such an agent must exist). Consider agent j instead offering x′ < x to agent i (and keeping

x − x′ for herself) and let the resulting net sum of the offers that proposer i makes to the

other agents be denoted by Z ′i. Let x′ < x be chosen such that Z ′i ≤ 0 (note that this is

feasible because Zi < 0).

Making the offer x′ instead of x is a strictly profitable deviation for agent j if agent

i still accepts the offer. Because Z ′i ≤ 0, the payoff to agent i who is a proposer on k ≥ 1

pies from accepting would be at least k ≥ 1, while the payoff to rejecting would be δV .

By the first paragraph of the proof, we have 1 > δV , so that k ≥ 1 > δV . Then agent i

must accept this offer (because agents use weakly undominated voting strategies). This is a

contradiction.

Define

αi =
Zi∑
j∈P Zj

Note that the fact that there is agreement under Q implies that Zi > 0 for some i ∈ P .

Therefore, we have
∑

j∈P Zj > 0, which implies that αi is well-defined.

αi is the ratio of the sum of the net offers proposer i makes to the other agents to the

sum of the net offers all proposers make to the other agents. Observe that, because Zi ≥ 0

for all i, we have αi ≥ 0 for all i.
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Suppose that the public randomization device generates a uniform distribution over

{J ⊆ NQ : |J | = sQ}. Given that the realization of the public randomization device is J ,

for each i ∈ P and k ∈ J , let xik = αiYk. That is, we let each proposer i make an offer to a

non-proposer k in the subset of the non-proposers J that gives to the non-proposer k in J a

share αi of the sum of his previous offers Yk.

Note that for each i ∈ P , the net transfers with the original offers are −Zi = Yi −Xi.

Observe also that we have
∑

j∈P Xj =
∑

i Yi, that is, the sum of all offers made by the

proposers to the other agents must be equal to the sum of the offers received by all agents.

This implies that
∑

j∈P Zj =
∑

k∈J Yk, that is, the sum of the net offers made by the

proposers to the other agents is equal to the sum of the offers received by the non-proposers

in the subset J .

By construction, the sum of the offers received by each agent i ∈ J is the same under the

previous offers and under the new offers. Under the new offers, the net offers made by each

agent i ∈ P to the other agents are −
∑

k∈J xik = −αi
∑

k∈J Yk = − Zi∑
j∈P Zj

∑
k∈J Yk = −Zi

because
∑

j∈P Zj =
∑

k∈J Yk. Therefore, the new set of offers gives the same payoffs to all

agents. Thus it is consistent with equilibrium for the agents to make and accept these offers

under Q. �

Lemma 2. Fix a distribution of proposal power f . Consider the class of pure strategy

symmetric stationary subgame perfect equilibria in which agents use stage-undominated

voting strategies and proposers do not make net offers that leave them strictly less than

their discounted equilibrium continuation values. If P = Q(σ′) for some equilibrium σ′ that

exists given f such that some proposer makes strictly positive offers under Q 6∈ Q(σ′), then

(given f) there exists an equilibrium σ such that P = Q(σ) and all proposers make zero

offers under Q 6∈ Q(σ).

Proof of lemma 2.

Fix Q 6∈ Q(σ′) such that some proposer makes strictly positive offers when the

proposing partition is Q. Let x denote the sum of offers that an agent in the minimal

non-proposing winning coalition (MNWC) receives from the proposers under Q.

Note that the requirement that proposers do not make net offers that leave them strictly

less than their discounted equilibrium continuation values, combined with the requirement

that agents use stage-undominated voting strategies, implies that the proposers always vote

in favor of the proposals. Then, because there is disagreement under Q in σ′ and agents use

stage-undominated voting strategies, we must have x < δV σ′ for an agent in the MNWC

(note that this inequality must be satisfied for all members of the MNWC because all

members of this coalition are treated symmetrically by proposers).
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Let us use y to denote the offer of a proposer on DQ pies to a member of MNWC in

equilibrium σ′. Then, in order to achieve agreement, a proposer on DQ pies would have to

give δV σ′−(x−y) (rather than y) to each of the sQ of the members of the MNWC. By lemma

1, for the purposes of determining the payoffs that are attainable in equilibrium, it is without

loss of generality to focus on the equilibria in which no proposer receives strictly positive

offers. Then, because no proposer receives strictly positive offers, a proposer on DQ pies keeps

DQ less the offers she makes to the non-proposers. Then disagreement under Q in σ′ implies

that we must have DQ−sQ(δV σ′−(x−y)) < δV σ′ , that is, a proposer on DQ pies is unwilling

to make the offers leading to an agreement. Because DQ−sQδV σ′ ≤ DQ−sQ(δV σ′−(x−y)),

the fact that DQ − sQ(δV σ′ − (x− y)) < δV σ′ implies that DQ − sQδV σ′ < δV σ′ .

By lemma 4, in any equilibria σ and σ′ satisfyingQ(σ) = Q(σ′) we must have V σ′ = V σ.

Then, because V σ′ = V σ, the fact that DQ−sQδV σ′ < δV σ′ implies that DQ−sQδV σ < δV σ.

Therefore, there must also be disagreement under Q in equilibrium σ (given the conjecture

that all other proposers make zero offers).

Let the strategies in σ under proposing partitions Q ∈ Q(σ) be the same as the

strategies in σ′ under proposing partitions Q ∈ Q(σ′). Observe that, because V σ′ = V σ,

the incentives to agree under Q ∈ Q(σ) are preserved, so for all Q ∈ Q(σ′) we must have

Q ∈ Q(σ). �

Lemma 3 (Necessary Conditions for an Equilibrium). Suppose that (Q1,Q2) is a

partition of Q and there exists an equilibrium σ such that Q(σ) = Q2. Then δV σ >
DQ
sQ+1

for

all Q ∈ Q1.

Moreover, if σ is a simple equilibrium and f(Q) > 0 implies that |{k ∈ Q : k = DQ}| =
1, then δV σ <

DQ
sQ+1

for all Q ∈ Q2.

Proof of lemma 3.

Because Q(σ) = Q2, it must be the case that if Q ∈ Q1, then each proposer on k ∈ Q
pies prefers to make zero offers given that all other proposers in the proposing partition Q are

making zero offers. The payoff to making the offers that are acceptable to the non-proposers

is k − sQδV σ, while the payoff to making zero offers is δV σ. Thus it must be the case that

k − sQδV σ < δV σ, which is equivalent to δV σ > k
sQ+1

for all k ∈ Q. Because DQ ∈ Q, it

must be the case that, in particular, δV σ >
DQ
sQ+1

.

Suppose that σ is a simple equilibrium and f(Q) > 0 implies that |{q ∈ Q : q =

DQ}| = 1. This implies that for each proposing partition Q ∈ Q2 there is a unique agent

who is a proposer on DQ pies. Because Q \ Q(σ) = Q1 and σ is a simple equilibrium, it

must be the case that if Q ∈ Q2, then the proposer on DQ pies prefers to make an offer

of δV σ to each of the sQ agents in a subset of non-proposers given that all other proposers
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in the proposing partition Q are making zero offers. The payoff to making these offers is

DQ−sQδV σ, while the payoff to offering anything strictly less than δV σ to any non-proposer

is δV σ. Thus it must be the case that DQ−sQδV σ > δV σ, which is equivalent to δV σ <
DQ
sQ+1

,

as required. �

Lemma 4. Suppose that the distribution of proposal power is f and there exists an

equilibrium σ. The value in an equilibrium σ with Q(σ) = P is given by

U(P , f) =
m

n

∑
Q∈P f(Q)

1− δ + δ
∑

Q∈P f(Q)

Proof of lemma 4.

Consider an equilibrium in which there is agreement if and only if Q ∈ P . Because

under every proposing partition every agent has the same probability of being a proposer,

if the agents use symmetric strategies in equilibrium, then their equilibrium values are the

same.

Thus, because in a symmetric equilibrium the expected payoff in every state in which

there is agreement must be the same for every agent and must equal the available surplus

(which is m) divided by the number of agents (which is n), the value function V must satisfy

V =
m

n

∑
Q∈P

f(Q) + δ

(
1−

∑
Q∈P

f(Q)

)
V

This is equivalent to

V =
m

n

∑
Q∈P f(Q)

1− δ + δ
∑

Q∈P f(Q)

as required. �

Lemma 5 (Sufficient Conditions for an Equilibrium). Suppose that (Q1,Q2) is a

partition of Q, there exists a constant κ > 0 satisfying δκ >
DQ
sQ+1

for Q ∈ Q1 and δκ <
DQ
sQ+1

for Q ∈ Q2, and there exists a proposal power distribution f such that κ = U(Q2, f).

Then there exists a simple equilibrium σ such that Q(σ) = Q2. Moreover, the value in the

equilibrium σ is given by U(Q2, f).

Proof of lemma 5.

We will show that there exists a simple equilibrium σ such that Q(σ) = Q2. By

lemma 4, the value in an equilibrium σ is given by U(Q(σ), f). Because, by the hypothesis,

there exists a proposal power distribution f such that κ = U(Q2, f), κ is the value in the
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equilibrium σ.

We first show that if Q ∈ Q1, then each proposer on k ∈ Q pies prefers to make zero

offers given that all other proposers in the proposing partition Q are making zero offers.

The payoff to making the offers that are acceptable to sQ of the non-proposers is k − sQδκ,

while the payoff to making zero offers is δκ. Thus we require that k − sQδκ < δκ, which is

equivalent to δκ > k
sQ+1

for all k ∈ Q. Because DQ ≥ k for all k ∈ Q, the fact that δκ >
DQ
sQ+1

for all Q ∈ Q1 implies that δκ > k
sQ+1

for all k ∈ Q, Q ∈ Q1 is satisfied, as required.

Let NQ denote the set of the non-proposers under Q. After the proposing partition

Q is realized, the public randomization device generates a distribution that is uniform on

{J ⊆ NQ : |J | = sQ}. Let K = |{k ∈ Q : k = DQ}|. If the realization of the public

randomization device is J ⊆ NQ, then each proposer on DQ pies makes an offer of 1
K
δκ to

each agent who is in J and makes zero offers to all other agents.

We next show that if Q ∈ Q2, then each of the K agents who is a proposer on DQ pies

weakly prefers to make an offer of 1
K
δκ to each agent who is in J . The sum of offers each

proposer on DQ pies makes is
sQ
K
δκ. The payoff to making the required offers is DQ− sQ

K
δκ,

while the payoff to deviating to offering a strictly smaller amount to any agent in J is δκ.

Thus we require that DQ− sQ
K
δκ > δκ, which is equivalent to δκ <

DQ
sQ
K

+1
. Because δκ <

DQ
sQ+1

for all Q ∈ Q2, we have δκ <
DQ
sQ+1

≤ DQ
sQ
K

+1
, as required.

Observe that the equilibrium σ is simple because only the proposers on the maximum

number of pies DQ make strictly positive offers. �

I let Ω(f) denote the set of the agreement sets for the equilibria that exist given that

the distribution of the proposal power is f .

Lemma 6 (Worst Equilibrium). Given that the distribution of the proposal power is f ,

there exists a simple equilibrium σ such that Q(σ) = Cf . If for some equilibrium σ′ we have

that Q(σ′) ∈ Ω(f) and Q(σ′) 6= Q(σ), then V σ′ > V σ.

Proof of lemma 6.

Lemma 5 implies that if δU(Q(σ), f) > RQ for all Q 6∈ Q(σ) and δU(Q(σ), f) < RQ

for all Q ∈ Q(σ), then there exists a simple equilibrium σ such that Q(σ) ∈ Ω(f).

Recall that Cf = {Q : RQ ≥ δV (RQ)}, so that U(Cf , f) = V (RQ∗). Because RQ > RQ∗

for all Q ∈ Cf \Q∗, this implies that δU(Cf , f) < RQ for all Q ∈ Cf . Because RQ∗−
< δV (RQ∗)

by assumption and RQ < RQ∗−
for all Q 6∈ Cf ∪Q∗−, we have δU(Cf , f) > RQ for all Q 6∈ Cf .

Therefore, there exists a simple equilibrium σ such that Q(σ) = Cf , as required.

Suppose that there exists an equilibrium σ′ such that Q(σ′) ∈ Ω(f) and Q(σ′) 6= Q(σ).

23



If Q(σ) ⊂ Q(σ′), then we are done. Therefore, suppose that there exists Q′ ∈ Q(σ) such

that Q′ 6∈ Q(σ′). By lemma 3, a necessary condition to have Q(σ′) ∈ Ω(f) is that δV σ′ > RQ

for all Q ∈ Q such that Q 6∈ Q(σ′). In particular, because Q′ 6∈ Q(σ′), we must have

δV σ′ > RQ′ (1)

Recall that Q∗ = min {Q : Q ∈ Cf}, where the minimum is taken with respect to the

order induced by RQ, and that V σ = U(Cf , f). Then

RQ∗ ≥ δV σ (2)

Because Q′ ∈ Q(σ), we have

RQ′ ≥ RQ∗ (3)

Thus δV σ′ > RQ′ ≥ RQ∗ ≥ δV σ, where the first inequality follows from (1), the second

inequality follows from (3) and the third inequality follows from (2). Therefore, V σ′ > V σ,

as required. �

Proof of Theorem 1.

The proof of Part 1 of the Theorem follows from lemma 7. The claim that in the worst

equilibrium, the agreement set is Cf = {Q ∈ Q : RQ ≥ δV (RQ)} follows from lemma 6.

We now claim that there exists an equilibrium with delayed agreement if and only if

Cf 6= Q. If Cf 6= Q, then lemma 6 implies that there exists an equilibrium with delayed

agreement. If there exists an equilibrium with delayed agreement, then the payoff in this

equilibrium is strictly less than m
n

, which implies that Cf 6= Q.

Finally, we show that Cf 6= Q if and only if minQ∈QRQ < δm
n

. This follows from the

fact that Cf = {Q : RQ ≥ δV (RQ)}, V is decreasing and V (minQ∈QRQ) = m
n

. �

Definition 2. Given P ⊂ Q, we say that L(P) is the disagreement partition if

L(P) = maxQ \ P

where the maximum is taken with respect to the order on proposing partitions induced by

RQ.

I let BQ = 1 − 1−δ

δ

(
m
n

sQ+1

DQ
−1

) for Q such that RQ < m
n

and BQ = −∞ for Q such that

RQ ≥ m
n

.
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Lemma 7. If
∑

Q∈P f(Q) > 1−BL(P) or P = Q, then P ∈ Ω(f).

Proof of lemma 7.

We will show that there exists an equilibrium σ such that Q(σ) = P . Suppose first

that P 6= Q. We require that there is disagreement under the proposing partitions not in

P . We conjecture equilibrium strategies such that under the proposing partitions not in P ,

all proposers make zero offers. For this, it is sufficient that, for each Q ∈ Q \ P , provided

that all other proposers are making zero offers, a proposer on DQ pies prefers not to make

the offers leading to an agreement. In order to obtain agreement, a proposer on DQ pies

would need to make offers yielding a payoff no greater than DQ − sQδV σ to the proposer,

while the payoff to disagreeing is δV σ. Thus it is sufficient to have DQ − sQδV σ < δV σ for

all Q ∈ Q \ P , which is equivalent to δV σ >
DQ
sQ+1

for all Q ∈ Q \ P .

Recall that L(P) = max{Q : Q ∈ Q \ P}, where the maximum is taken with respect

to the order induced by RQ. Because, by lemma 4, we have V σ = U(P , f),
∑

Q∈P f(Q) >

1 − BL(P) is equivalent to δV σ >
DL(P)

sL(P)+1
. Because RL(P) ≥ RQ for all Q 6∈ P , this implies

that δV σ >
DQ
sQ+1

for all Q 6∈ P .

Suppose next that P = Q. Then Q \ P = ∅, and it is sufficient to show that there is

agreement under the proposing partitions in P .

Given Q ∈ Q and k ∈ Q, define

βk(Q) =
kn−m
sQm

We require that there is agreement under the proposing partitions in P . For each

Q ∈ P , we conjecture the following strategies. The public randomization device generates

a distribution that is uniform on {J ⊆ NQ : |J | = sQ}, where NQ denotes the set of the

non-proposers under the proposing partition Q. If the realization of the public randomization

device is J ⊆ NQ, then each proposer controlling k pies in Q offers βk(Q)δV σ to each agent

in J . Observe that βk(Q) > 0 and

∑
k∈Q

βk(Q) =

∑
k∈Q kn

sQm
− |Q|
sQ

=
mn

sQm
− n− sQ

sQ
= 1

Then each non-proposer receives the sum of offers equal to
∑

k∈Q βk(Q)δV σ = δV σ and

accepts these offers.

The payoff to making these offers is k − sQβk(Q)δV σ, while the payoff to deviating to

offers that are any lower is δV σ. Thus we require that k − sQβk(Q)δV σ > δV σ, which is
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equivalent to δV σ < k
sQβk(Q)+1

. Because δV σ < m
n

, it is sufficient to show that

m

n
≤ k

sQβk(Q) + 1

The definition of βk(Q) ensures that this constraint holds with equality. �

Lemma 8. If P̃ ∈ Ω(f), then for all P ⊆ Q such that P̃ ⊂ P, we have P ∈ Ω(f).

Proof of lemma 8.

Suppose first that P = Q. Then the result follows from lemma 7.

Suppose next that P ⊂ Q. Then Q \ P 6= ∅, so L(P) is well-defined.

Because P̃ ∈ Ω(f), there exists an equilibrium σ such that Q(σ) = P̃ . Then there is

disagreement in equilibrium σ under proposing partitions in Q\P̃ . Because P̃ ⊂ P , we have

Q \ P ⊂ Q \ P̃ . This implies that there is disagreement in equilibrium σ under proposing

partitions in Q \ P .

Because there is disagreement in equilibrium σ under proposing partitions in Q \ P ,

lemma 3 implies that δV σ > RQ for all Q ∈ Q \ P . Because V σ = U(Q(σ), f), this is

equivalent to ∑
Q∈P̃

f(Q) > 1−BL(P̃) (4)

Because P̃ ⊂ P , we have that L(P) ≤ L
(
P̃
)

. Because Q 7→ BQ is decreasing, this

implies that

1−BL(P) ≤ 1−BL(P̃) (5)

Because P̃ ⊂ P , we have ∑
Q∈P

f(Q) ≥
∑
Q∈P̃

f(Q) (6)

Then ∑
Q∈P

f(Q) ≥
∑
Q∈P̃

f(Q) > 1−BL(P̃) ≥ 1−BL(P)

where the first inequality follows from (6), the second inequality follows from (4) and the

third inequality follows from (5).

Thus
∑

Q∈P f(Q) > 1−BL(P) holds. Then the result follows from lemma 7. �

Proof of Proposition 1.
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Proof of Part 1 of the Proposition.

We will prove the following statement: for P ∈ Ω(f), if
∑

Q∈P f̃(Q) ≥
∑

Q∈P f(Q),

then P ∈ Ω
(
f̃
)

.

Consider P ⊂ Q. We will show that if P ⊂ Q, then P ∈ Ω(f) if and only if∑
Q∈P f(Q) > 1−BL(P). Part 1 of the Proposition will then follow from this.

Suppose that P ∈ Ω(f). By lemma 3, a necessary condition to have P ∈ Ω(f) is

that δU(P , f) > RQ for all Q 6∈ P . In particular, we must have δU(P , f) >
DL(P)

sL(P)+1
. This

implies that
∑

Q∈P f(Q) > 1−BL(P), as required. Conversely, suppose that
∑

Q∈Q(σ) f(Q) >

1−BL(Q(σ)). Then the result follows from lemma 7.

Proof of Part 2 of the Proposition.

We will prove the following statement: G ⊆ P for P ∈ Ω(f) and {m} ∈ G.

Lemma 3 implies that if δV (RQ) ≤ RQ, then agents must agree at Q. Note that the

fact that V (RQ) ≤ m
n

for all Q implies that δV (RQ) ≤ δm
n

. Then for Q such that δm
n
≤ RQ,

we have δV (RQ) ≤ RQ. This implies that at all Q such that δm
n
≤ RQ, agents must agree in

any equilibrium.

Proof of Part 3 of the Proposition.

We will prove the following statement: {P ⊆ Q : Cf ⊆ P} ⊆ Ω(f).

Lemma 6 implies that Cf ∈ Ω(f). The result then follows from lemma 8.

Proof of Part 4 of the Proposition.

We will prove the following statement: if
∑

Q 6∈Cf f(Q) < f(Q′) for all Q′ ∈ Cf \G, then

{P ⊆ Q : Cf ⊆ P} = Ω(f).

Suppose that
∑

Q 6∈Cf f(Q) < f(Q′) for all Q′ ∈ Cf \ G. Part 3 of the Proposition shows

that {P ⊆ Q : Cf ⊆ P} ⊆ Ω(f). Given this, it is sufficient to show that Ω(f) ⊆ {P ⊆ Q :

Cf ⊆ P}.

Then we would like to show that there does not exist P ∈ Ω(f) such that Q′ 6∈ P for

some Q′ ∈ Cf . Thus we fix P such that there exists Q′ satisfying Q′ 6∈ P and Q′ ∈ Cf . We

will show that P 6∈ Ω(f).

Because Q′ 6∈ P , we have L(P) ≥ Q′. Because Q 7→ BQ is decreasing, this implies that

1−BL(P) ≥ 1−BQ′ (7)

Observe that
∑

Q∈P f(Q) ≤
∑

Q 6=Q′ f(Q) = 1 − f(Q′). Because
∑

Q6∈Cf f(Q) < f(Q′)
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by the hypothesis, we have 1− f(Q′) < 1−
∑

Q 6∈Cf f(Q) =
∑

Q∈Cf f(Q). This implies that∑
Q∈P

f(Q) <
∑
Q∈Cf

f(Q) (8)

Recall that δU(Cf , f) ≤ minQ∈Cf RQ and Q∗ = min Cf , where the minimum is taken

with respect to the order induced by RQ. Then δU(Cf , f) ≤ minQ∈Cf RQ implies that∑
Q∈Cf

f(Q) ≤ 1−BQ∗ (9)

Therefore,
∑

Q∈P f(Q) <
∑

Q∈Cf f(Q) ≤ 1−BQ∗ ≤ 1−BQ′ ≤ 1−BL(P), where the first

inequality follows from (8), the second inequality follows from (9), the third inequality follows

from the fact that Q′ ≥ Q∗ since Q′ ∈ Cf and from the fact that Q 7→ BQ is decreasing, and

the fourth inequality follows from (7).

Thus we have
∑

Q∈P f(Q) < 1 − BL(P). Then part 1 of the Proposition implies that

P 6∈ Ω(f), as required. �

Proof of Proposition 2.

Suppose first that minQ∈QRQ > δm
n

. If one period remains in the game, then there is

immediate agreement yielding the expected payoff m
n

to each agent. If two periods remain,

then a proposer on DQ pies strictly prefers to make offers leading to agreement when other

proposers make zero offers if DQ − sQδ
m
n
> δm

n
, which is equivalent to RQ > δm

n
. Since

minQ∈QRQ > δm
n

, the inequality is satisfied for all Q, which implies that there is agreement

under all Q ∈ Q. By induction, when T periods remain, there is agreement under all Q ∈ Q.

Suppose next that minQ∈QRQ ≤ δm
n

. Fix an equilibrium σ of the infinite-horizon game

and let P = Q(σ). Let Vt
(
σT
)

denote the continuation value given the equilibrium σT when

t periods have passed in a T -period game. For t ≤ T , let Kt−1 =
{
Q ∈ Q : RQ ≥ δVt

(
σT
)}

.

Set QT−1

(
σT
)

= Q and Qt
(
σT
)

= P for all t < T − 1. Let Ṽ denote the value

in the equilibrium σ in the infinite-horizon game. Note that VT−1 = m
n

and Vt−1

(
σT
)

=∑
Q∈P f(Q)m

n
+
(

1−
∑

Q∈P f(Q)
)
δVt
(
σT
)

for t < T . This implies that Vt
(
σT
)
∈
(
Ṽ , m

n

]
for all t < T .

Consider Q′ such that RQ′ = maxQ∈Q\P RQ. Because Q′ 6∈ P , we have RQ′ ≤ δṼ .

Then, because Vt
(
σT
)
∈
(
Ṽ , m

n

]
, we have RQ′ < δVt

(
σT
)

for all t < T . This implies that

Q′ 6∈ Kt for all t < T − 1. A proof similar to the proofs of lemma 5 and Proposition 1 can

be used to show that we can sustain agreement at Q ∈ Qt
(
σT
)

by conjecturing that all
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proposers contribute appropriate amounts, and that, since RQ′ = maxQ∈Q\P RQ and Q′ 6∈ Kt
for t < T − 1, disagreement is sustainable at all Q ∈ Q \ P for t < T − 1. This implies that

the equilibrium σT exists. �

Proof of Proposition 3.

The first part of the Proposition follows from lemma 7. Lemma 3 implies that if |{k ∈
Q : k = DQ}| = 1 whenever f(Q) > 0, then if σ is a simple equilibrium, δU(Q(σ), f) > RQ

for all Q ∈ Q \ Q(σ) and δU(Q(σ), f) < RQ for all Q ∈ Q(σ). By definition of Cf , this is

equivalent to Q(σ) = Cf . Therefore, the agreement set Q(σ) for the simple equilibrium is

unique, which implies that the simple equilibrium is unique. �

Proof of Proposition 4.

We will prove the following statement: if σq is a worst equilibrium under the voting rule

q and q1 ≥ q2, then
∑

Q∈Q(σq1 ) f(Q) ≤
∑

Q∈Q(σq2 ) f(Q) and U(Q(σq1), f) ≤ U(Q(σq2), f).

We make the dependence of the number of supporters sQ on q explicit by writing sqQ.

Recall that, by assumption, q > m for all q, which implies that sqQ = q − |Q| > 0 for all

Q and q. Define Jq,pQ = δm
n

p
1−δ+δp −

DQ
sqQ+1

. Observe that if for all Q ∈ Q and q1, q2 we

have sq1Q > 0 and sq2Q > 0, then whenever q1 > q2, we have sq1Q > sq2Q . This implies that

∂Jq,pQ /∂q > 0. Observe also that p 7→ δm
n

p
1−δ+δp is strictly increasing. This implies that

∂Jq,pQ /∂p < 0. Letting p(q) be implicitly defined by J
q,p(q)
Q = 0, observe that then we have

∂p(q)
∂q

= −∂Jq,pQ /∂q

∂Jq,pQ /∂p
< 0.

By lemma 6, the agreement set in the worst equilibrium is given by Cqf ={
Q ∈ Q : δm

n

∑
Q∈Q(σq)

f(Q)

1−δ+δ
∑
Q∈Q(σq)

f(Q)
− DQ

sqQ+1
≤ 0
}

, where I have made the dependence of the worst

equilibrium agreement set on q explicit. Therefore, Cqf =
{
Q ∈ Q : Jq,pQ ≤ 0

}
for p =∑

Q∈Q(σq)
f(Q). Then the fact that ∂p(q)

∂q
< 0 implies that

∑
Q∈Q(σq1 ) f(Q) ≤

∑
Q∈Q(σq2 ) f(Q),

as required. �
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